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Abstract

In this article, we propose an online method to estimate an approximate linear model of a vertically unstable
tokamak plasma to consequently adapt the parameters of a Vertical Stabilization controller. The identification
procedure is based on the Dynamic Mode Decomposition with control approach, while the tuning procedure
takes advantage of linear control theory to impose the desired crossing frequency and gain margins. The
proposed technique is aimed at controlling ITER elongated plasmas using the VS3 stabilization coils, located
inside the vessel. The effectiveness of the method is proven by means of numerical simulations carried
out with the CREATE-NL+ free boundary evolutionary code, also considering the presence of realistic
measurement noise levels.
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1. Introduction

Tokamaks [1] are regarded as the most promis-
ing concept for a viable commercial nuclear fusion
energy reactor. They are complex devices where a
ring of plasma is heated up to ∼ 108 degrees and
confined by means of powerful magnetic fields. The
operation of these machines calls for the solution
of a number of different control problems, among
which magnetic control [2, 3] plays a fundamental
role. In particular, the magnetic control system
is in charge of regulating the currents that flow in
the conducting coils in order to achieve a desired
magnetic field configuration. This configuration is
indirectly specified in terms of controlled quantities
of interest, such as the total plasma current, the po-
sition of the plasma centroid and of magnetic field
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null point(s), or plasma-wall gaps. However, the
most fundamental task fulfilled by a magnetic con-
trol system is perhaps that of stabilizing elongated
plasma configurations: while such configurations are
efficient from the point of view of fusion power gener-
ation, they are known to be intrinsically unstable [1,
§6.15], [4, 5].

Several approaches are described in the scien-
tific literature to solve the Vertical Stabilization
(VS) problem, most of which are model-based. Of-
ten, the VS controller is specifically designed for a
given plasma scenario, as in the case of the JET [6]
or DIII-D [7]. Similarly, a model-based VS algo-
rithm has also been proposed for the forthcoming
ITER tokamak [8, 9]; this algorithm has been ex-
perimentally tested on the EAST device, which has
a similar superconducting coils layout [10]. Other
approaches include nonlinear adaptive control [11]
and MPC [12].

One of the main parameters influencing the de-
sign of a VS control system is the plasma growth
rate γ, defined as the (real) unstable eigenvalue of
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the plasma linearized response model in the neigh-
borhood of the considered operational configuration,
which is associated to the coherent, unstable motion
of the plasma in the vertical direction. The real-time
reconstruction of this parameter could provide valu-
able information for adaptive VS control algorithms.
However, since the VS control loop usually needs to
operate with a very low latency time, computing a
full linearized plasma model at each controller time
step would be impractical in a real-time scenario,
even though some recent attempt in this direction
has been made by leveraging the computing power
of GPUs [13].

The main disadvantage of standard, model-based
VS design approaches is that, at least in princi-
ple, a dedicated controller must be tuned for each
plasma configuration of interest, usually based on a
linearized plasma response model computed offline.
This also means that, if different plasma config-
urations are foreseen during a scenario, different
controllers must be designed and validated offline,
and their use must be scheduled in advance accord-
ing to the foreseen discharge evolution. In this view,
an adaptive VS algorithm would increase the flexi-
bility of the magnetic control system, reducing the
deployment time due to offline design and validation.
An attempt in this direction has been made with an
alternative approach for the VS based on Extremum
Seeking algorithm [14, 15]. This solution, however,
still requires the design of an observer, based on a
reduced order plasma linearized model, to estimate
the plasma motion along the unstable eigenvector.

A possibility to avoid control solutions based on
pre-existing models could be to resort to online
model identification procedures based on measure-
ments. In this work, we make use of an identification
technique based on the Dynamic Mode Decompo-
sition with control (DMDc) approach [16], which
extends the Dynamic Mode Decomposition (DMD)
to the case of (linear) systems with control. A com-
prehensive overview on DMD and its applications
can be found in [17]. DMD was originally intro-
duced in the fluid dynamics community [18, 19] as
a tool to identify coherent spatio-temporal struc-
tures in a flow, together with the associated growth
rates and oscillation frequencies, based on measured
data. The DMD algorithm can be easily derived
for linear systems (as briefly discussed for the sake
of self-containedness in sec. 3), but is often used
for nonlinear systems as well, thanks to its connec-
tions with the Koopman operator theory [20], [17,
§1.2]. Applications of the DMD algorithm to the

field of plasma physics and nuclear fusion can be
found in [21, 22, 23].

The rest of the paper is structured as follows.
In sec. 2 some tools for electromagnetic modelling
used in the rest of the paper are introduced. A
simplified rigid filamentary model of the vertical
instability is briefly discussed as a motivation for
the proposed online identification procedure, and
some information on the current proposal for the
ITER VS system is given. In sec. 3, a model identi-
fication technique based on DMD is described, and
a comparison between the (reduced-order) identified
models and the corresponding full linearized models
obtained through the linearization of the plasma
equilibrium equations (by means of the CREATE-L
code) is presented, showing the effectiveness of the
procedure. Sec. 4 discusses a procedure to tune
the VS controller based on the identified model. In
sec. 5, numerical nonlinear simulations carried out
with the CREATE-NL+ code are used to prove the
validity of the overall control approach. Finally,
some concluding remarks are provided in sec. 6.
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Figure 1: Poloidal cross-section of an elongated ITER toka-
mak plasma as obtained by means of the CREATE-NL+ code;
the plasma boundary is shown in red, while a few isoflux
curves are shown in gray. The superconductive PF coils are
labeled in green, while the in-vessel coils V S3U−V S3L (con-
nected in anti-series to form the V S3 circuit) are indicated
in blue. The First Wall is highlighted in dark green.
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2. Preliminaries

2.1. Plasma modelling in axisymmetric geometry

In axi-symmetric conditions, the ideal MHD equi-
librium of a tokamak plasma can be described by
using cylindrical coordinates (r, z) in terms of the
poloidal flux per radian function ψ = ψ(r, z), de-
fined as the magnetic flux per radian across a disk at
height z, with radius r and with axis r = 0. The ψ
distribution in the tokamak vacuum chamber can be
found as the solution of a 2D elliptic partial differen-
tial equation (PDE) known as the Grad-Shafranov
equation

∆∗ψ(r, z) = −µ0rjϕ(r, z) , (1)

where µ0 is the vacuum magnetic permeability and
∆∗ is a differential operator defined as

∆∗ = r
∂

∂r

(
1

r

∂ψ

∂r

)
+

∂

∂z

(
∂ψ

∂z

)
. (2)

The source term jϕ represents the toroidal current
density, which in the plasma region is assumed to
be

jϕ =
f

µ0r

df

dψ
+ r

dp

dψ
(3)

where p is the total plasma pressure and f := rBϕ

is the so-called poloidal current function, Bϕ being
the toroidal magnetic field.

Equation 1 also holds in the conductor cross-
section, where the toroidal current density is known
(jϕ = jext) and in vacuum, where jϕ = 0. The
following boundary conditions are assigned

ψ(0, z) = 0 (4a)
lim

(r2+z2)→∞
ψ(r, z) = 0 (4b)

It is a standard assumption that, inside the plasma
region, p and f are theirselves functions of the
poloidal flux ψ, i.e. they are assumed constant on
isoflux surfaces. This means that the source term
jϕ(r, z) is a function of ψ(r, z). The plasma current
is usually constrained to flow inside the so-called
plasma boundary, defined as the outermost closed
isoflux line inside the vacuum chamber. This makes
eq. (1) a free-boundary, nonlinear problem, which
is usually solved by means of dedicated numerical
procedures.

Eq. (1) can be coupled with the circuit equations
describing the time evolution of the currents in the

active coils, in the passive structures and in the
plasma itself

Ψ̇ +RI = V , (5)

where Ψ is the vector of poloidal magnetic fluxes
linked with circuits, R is the resistance matrix, I is
the vector of currents in circuits, V contains the ap-
plied voltages (which are nonzero only for the active
coils). Note that the term Ψ̇ also takes into ac-
count the flux contribution coming from the plasma,
which depends on the solution of (1) as the plasma
is assumed to evolve through a series of MHD equi-
librium states. On the other hand, the source terms
in eq. (1) depend on the currents at the considered
time instant. In practice, the evolutive problem com-
ing from the coupling of GS equation (1) with the
circuit dynamics (5) is solved by means of numerical
solvers, such as the Finite Elements Method (FEM)
code CREATE-NL+ [24] used for the simulations
presented in sec. 5.

In order to design plasma magnetic controllers,
the plasma response is often linearized in the neigh-
borhood of the considered plasma equilibrium con-
figuration. This can be done, for example, by means
of the procedure implemented in the CREATE-L
code [25], which has been used for the analysis of
the method proposed in this article. The linearized
response models obtained through CREATE-L have
the form

L∗δİ +RδI = δV + LEδẇ (6a)
δy = CδI + Fδw (6b)

where the vector δV contains the applied voltage,
δI contains the current variations with respect to
the equilibrium values L∗ is the inductance matrix1,
δw contains the variations of input variables related
to the current density distribution inside the plasma
(usually parameterized in terms of poloidal beta βp
and internal inductance li), whose variation has an
impact on the flux linked with circuits through the
LE matrix. The vector δy contains variations with
respect to the equilibrium values of some outputs
of interest, such as magnetic measurements, plasma-
wall gaps, centroid and X-point positions; these
variations are linked to the currents through the
output matrix C, and to the plasma parameters
through the matrix F . The linear system (6) can

1The ∗ apex indicates that this matrix is modified by the
presence of the plasma; see also the discussion in the next
section.
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be recast in state-space form as

δẋ = Aδx+Bδu+ Eδẇ

δy = Cδx+ Fδw
(7)

where x = I, u = V , A = −L∗−1R, B = L∗−1

and E = L∗−1LE .

2.2. Vertical instability and rigid displacement
model

It is a well-known fact that elongated plasma
configurations in tokamaks are vertically unstable [1,
§6.15]. It is possible to draw some conclusions on
such instability even by making use of a very crude
filamentary model of the plasma. In the simplest
possible model of this unstable vertical motion, the
plasma ring is approximated by a rigid filament
carrying a current Ip, which is allowed to move in
the vertical direction only. We denote the radius
of this filament by rp and its vertical position by
zp. The vertical force exerted on this filament by a
(radial) magnetic field can be expressed as

mpz̈p = −2πrpIpBr(zp, Ia, Ie) (8)

where mp is the plasma mass and Br is the ra-
dial magnetic field component at (rp, zp), which
depends on the filament vertical position zp and
on the currents in the active and passive circuits,
Ia, Ie respectively. Elongated plasma configurations
are obtained by applying a quadrupole magnetic
field [4], which means that the radial field has a
nonzero downward gradient along the vertical di-
rection, as shown in fig. 2. As it can be seen, the
radial field is larger far from the equilibrium posi-
tion, which means that a small displacement of the
plasma results in a net force which pushes the plasma
ring further away from the equilibrium, resulting
in a positive-feedback mechanism which makes the
equilibrium position (i.e. the point where Br = 0)
unstable.

Eq. (8) can be coupled with the circuit dynam-
ics (5) as follows

Laİa +RaIa +Maeİe + ψ̇ap(zp) = Va

Leİe +ReIe +Meaİa + ψ̇ep(zp) = 0
(9)

where the pedices (a, e) refer to active and pas-
sive currents respectively, R,L,M represent resis-
tance, self-inductance and mutual inductance ma-
trices and ψ(a,e)p is the flux contribution generated
by the plasma current distribution and enclosed by
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Figure 2: Radial magnetic field component for the elongated
plasma cross-section shown in fig. 1 along a vertical line
passing through the magnetic axis (indicated by the black
cross).

the active and passive elements respectively. The
flux terms ψ(a,e)p(zp) are linked to the radial fields
B

(a,e)
r (zp), generated by the active and passive cur-

rents respectively, through the relation

B(a,e)
r = − 1

2πrp

∂ψp(a,e)

∂zp
(10)

By linearizing the expression of Br(zp, Ia, Ie) and
neglecting the plasma mass mp in eq. (8), a static
relation between zp and the currents I(a,e) can be
obtained (the details are omitted here for the sake
of brevity). This allows to derive a linear relation
between the terms ψ(a,e)p(zp) and the variations
of the considered currents δI(a,e), leading to the
(linearized) circuit model[

δİa
δİe

]
= −L∗−1R

[
δIa
δIe

]
+ L∗−1

[
δVa
0

]
(11)

where L∗ is a modified inductance matrix, that takes
into account both the destabilizing force generated
by a vertical motion of the plasma and the stabilizing
effect of the passive structures (see also eq. (6a) - we
used again the same symbol L∗, with a slight abuse
of notation, to underline that this inductance matrix
is not the geometric coil inductance, but also takes
into account the presence of the plasma). From
eq. 11 it appears clearly that the characteristic time
constant of the vertical instability depends on the
time constant of the passive structures surrounding
the plasma through the term −L∗−1R. In practice,
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the resulting growth rate is usually in the order of
101 ∼ 103 s−1.

2.3. Vertical Stabilization system
The VS system proposed for ITER relies on coils

that are placed both outside and inside the tokamak
vessel. However, among the available actuators the
so called V S3U − V S3L in-vessel coils are much
more effective as they suffer less from the shielding
of the passive conductive structures, they are closer
to the plasma and they are more reactive to voltage
commands due to their lower inductance. On the
other hand, they are adequate to quickly react to
variations in the plasma vertical speed, but not to
position displacements, since they are not designed
to carry high currents for a long time. In this view,
the considered VS control loop exploits V S3U −
V S3L to keep the plasma vertical velocity close to
zero, while the task of regulating the position of the
plasma centroid is demanded to another, dedicated
control loop, which relies on the out-vessel coils.

The VS3 coils are connected in anti-series in or-
der to produce an approximately radial field inside
the vacuum chamber and thus serve as a suitable
actuator for the vertical stabilization system. We
denote the current flowing in the resulting circuit as
IV S3 and consider the following control law from [8]

u = Kz żp +KIIV S3 (12)

u being VS3 voltage and zp the vertical position of
the plasma centroid.

This kind of control law has been experimentally
validated on the EAST tokamak [10, 26], where an
additional lead network was added and both the
control gains, and the network parameters were op-
timized in order to improve the resulting stability
margins [27]. Note that in tokamaks an estimate
of the vertical position zp of the plasma is usu-
ally obtained as a linear combination of magnetic
measurements. Then, the vertical velocity żp is ob-
tained from the estimated zp through a numerical
derivative. In our analysis, we will use the following
derivative filter

F (s) =
s

1 + 10−3s
. (13)

Moreover, in what follows we will also consider a
simplified model of the power supplies having the
following transfer function

Wps(s) =
e−sτ1

1 + sτ2
(14)

VV S3
+

IV S3

zp

VS system

Plant

K2

Magnetic
diagnostics

Plasma and
surrounding
structures

K1HPF

Dynamic
compensator

Power Supply

żp

Figure 3: Schematic of the considered VS system.

with τ1 = 2.5 ms and τ2 = 7.5 ms [28].
Starting from these considerations, a schematic

view of the VS system considered in the rest of this
article is shown in fig. 3. In the proposed archi-
tecture a dynamic compensator is included in the
VS system, similarly to what has been done for the
EAST tokamak [10]. However, while a lead network
was used in the EAST case in order to increase the
resulting phase margin, for ITER a lag network is
added to assign the crossing frequency of the loop
function in the controller tuning procedure discussed
in sec. 4. Intuitively, this can be justified by tak-
ing into account the fact that the typical growth
rates associated to ITER plasmas are much smaller
than the ones obtained in EAST, so there is less
need to anticipate the controller action; on the other
hand, it is important to limit the bandwidth to avoid
stressing the power supplies, which are slower in the
ITER case.

3. Model identification

As discussed in sec. 2.2, a very simple filamentary
model of the plasma is already capable of captur-
ing the vertical instability of the system. However,
rigid displacement models cannot be used for radial
position and/or shape control, since they cannot de-
scribe radial displacements of the plasma or bound-
ary deformations. Moreover, in the case of highly
shaped plasmas, filamentary models derived from
first principles can provide an inaccurate estimate of
the plasma growth rate, and hence of the unstable
dynamics [29]. For these reasons, when designing
model-based controllers, usually more sophisticated
approaches are preferred, such as perturbed equilib-
rium/nonrigid displacement ones [29, 30, 31].

On the other hand, linearized models can be costly
to compute, and hence they are not suitable as a ba-
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sis for real-time adaptive control algorithms. More-
over, a VS system in the form (12) only requires the
knowledge of the dynamics relating the voltage on
the stabilization circuit VV S3 to the current IV S3

and żp, and hence to design such a controller a sim-
plified model is often sufficient. For this reason, we
propose to resort to a simple 2nd order model whose
structure is inspired by (11). In order to obtain good
prediction and modeling accuracy, the parameters
are identified online on the basis of experimental
measurements.

In this section, we will give some details on the
considered simplified model structure (sec. 3.1) and
on the identification procedure (sec. 3.2); then, an
example of an identified linear model is provided
in sec. 3.3, and is further refined in sec. 3.4. A
possible automated controller synthesis procedure
is discussed in sec. 4.

3.1. Model structure

The simplest linear model to catch the IV S3 dy-
namics and its relation to zp takes into account the
stabilization circuit only

LV S3 δİV S3 +RV S3 δIV S3 + a δżp = δVV S3 (15)

where the term aδżp represents the voltage in-
duced in the V S3 by the vertical plasma movement.
Eq. (15) is coupled with the following scalar vertical
instability model [5]

δżp = γ δzp + d δVV S3 (16)

In this model, the vertical motion is characterized
by the single unstable eigenvalue γ (the plasma
growth rate) and is affected by the voltage applied
to the active control circuit VV S3 through a scalar
coefficient d. In this simplified view, the effect of
the other control circuits, which are placed outside
the vessel and act on slower time scales, is regarded
as a slowly varying disturbance.

It is worth to remark that the identified values of
LV S3 and RV S3 will in general be close – but differ-
ent from – the actual parameters of the V S3 circuit.
In particular, the simplified model inductance will
be affected by the dynamics of both the induced
passive currents and the plasma, while the identified
resistance may suffer from a bad identification of
the steady-state behaviour of the system. For this
reason, while a deviation from the actual inductance
value of the V S3 circuit is necessary for the identi-
fied model to closely describe the real-world plasma

dynamics, deviations in the value of RV S3 will in
general be regarded as identification errors and cor-
rected through the dedicated procedure described
in sec. 3.4.

In addition to that, we also allow δżp in eq. (16)
to directly depend on δIV S3, and hence rewrite (16)
as

δżp = b δIV S3 + c δzp + d δVV S3 (17)

This provides an additional degree of freedom to
the identification procedure, although the identified
value of b is expected to be relatively small. Notice
that, since the term c δzp represents the unstable
contribution to the plasma motion due to the Br

vertical gradient (see fig. 2), we expect c > 0.
By substituting eq. (17) in eq. (15) we obtain the

following reduced model structure[
δİV S3

δżp

]
=

[
− (RV S3+ab)

LV S3
− ac

LV S3

b c

] [
δIV S3

δzp

]
+

[
(1−ad)
LV S3

d

]
δVV S3

=

[
a11 a12
a21 a22

] [
δIV S3

δzp

]
+

[
b1
b2

]
δVV S3 ,

(18)
The matrix transfer function at s = 0 is given by

H(0) = −
[
a11 a12
a21 a22

]−1 [
b1
b2

]
.

With a slight abuse of notation (since system (18)
is unstable), we will refer to the elements of H(0)
as static gains.

3.2. Identification procedure
To obtain an identified model for the design of

the VS controller, we make use of the DMDc ap-
proach [16]. To start with, we consider the discrete-
time version of (18)

x(k + 1) = Ax(k) +Bu(k) (19)

where x(k) = [δIV S3(k) δzp(k)]
T and

u(k) = δVV S3(k). By defining the following matri-
ces

X0,T =
[
x(0) x(1) ... x(T − 1)

]
(20a)

X1,T+1 =
[
x(1) x(2) ... x(T )

]
(20b)

U0,T =
[
u(0) u(1) ... u(T − 1)

]
(20c)

model (19) can be rewritten as

X1,T+1 = AX0,T +BU0,T = [A B]

[
X0,T

U0,T

]
. (21)
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The identified model matrices Â, B̂ can then be
obtained as[

Â B̂
]
= X1,T+1

[
X0,T

U0,T

]†
, (22)

where the superscript † denotes the right pseudo-
inverse.

Notice that, for the identification procedure to be
effective, if x ∈ Rn, u ∈ Rm the control input must
be persistently exciting of order n+1, which in turn
implies that the signals used for the identification
must contain at least (m+1)n+m samples (see [32,
eq. (6)]). For the reduced model (18), n = 2,m = 1,
and hence T ≥ 5. In practice we found that a few
hundred samples are required to obtain an accurate
model. Interestingly, this is consistent with the
dimension of a typical full size model (7).

To trigger the unstable mode, a train of V S3
voltage doublets is used. These voltage kicks are
chosen to minimize their effect on the scenario, and
in particular

• the impulses have a limited amplitude (50V for
ITER);

• the duty cycle is 15%;

• the doublet directions are swapped to minimize
potential drift effects during plasma discharges.

Note that the VS controller remains active during
the kicks. This kind of perturbation is not new in
the nuclear fusion literature, and the applied voltage
impulses are not expected to represent a threat to
plasma operation in an actual tokamak discharge.
In fact, perturbations of the radial magnetic field
produced by the VS system have also been proved
to be beneficial as a possible tool for ELM pacing
at JET [33].

After each kick, the data samples are collected
and the identification process (22) is run. Then, the
obtained model is used to tune the VS system, as
discussed in sec. 4. In the simulations presented
in this article, a time interval of 0.25 s, starting
from the beginning of the kick, has been used for
the identification; this choice corresponds to 500
samples at the considered sampling time of 0.5 ms.

Before concluding this section, it should be ob-
served that, with respect to the more sophisticated
model (7), in this identification procedure we are
neglecting the effect of variations in the plasma in-
ternal current distribution (synthetically described
by the term δw in (7)). These variations, however,

could have a significant impact on the estimated dy-
namics, and in principle should be explicitly taken
into account. This is especially true in some specific
situations, for example during the so-called LH or
HL transitions; as a consequence, the identification
procedure should be run far from such transients.
For simplicity, in our analysis we neglect the ef-
fect of the δw term in (7) and assume that, during
the time interval considered for the identification
procedure, the plasma internal profiles remain ap-
proximately constant. Similarly, we assume that the
plasma shape variations occur on a time scale that is
significantly slower than the typical time constants
of the VS system. This is usually a well-satisfied
approximation in tokamak discharges, especially if
control coils are superconducting and external to the
vacuum vessel, and allows to neglect the variations
in the active currents other than the VS one.

3.3. Identification example
To validate the proposed identification procedure,

we considered a simulated plasma scenario segment
that reproduces the first ∼ 6 s of the ramp-down
of one of the foreseen ITER scenarios. The plasma
current is reduced from 9MA to 8.5MA (see fig. 5),
while the plasma profile parameters βp, li are kept
constant through the simulation. To excite the
unstable dynamics for the identification, a sequence
of voltage kicks is applied to the in-vessel circuit, as
shown in fig. 4. The model identification procedure
runs every second, with the first voltage kick at
t = 0.15 s. The time step of the simulation is fixed
to 0.5ms, and 500 steps are used in the identification
procedure, resulting in a time window of 0.25s.
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Figure 4: VS3 voltage kicks used for identification.

Fig. 6 shows a comparison between the identified
growth rates and the eigenvalues of the linearized
models obtained ad the corresponding time instants
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Figure 5: Plasma current evolution.
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Figure 6: Growth rate comparison between CREATE-L
(blue), identified models (red) and models identified by also
fitting the static gain of the IV S3 channel with a weight
α = 400 (yellow). It can be noted that the proposed static
gain adjustment leads to slightly higher estimates of the
growth rate; this is not a problem, as in this case a higher
value of γ represents a pessimistic scenario.

with CREATE-L (with state dimension n = 123,
including active and plasma currents and equiva-
lent axisymmetric passive currents). As it can be
seen, the actual and identified growth rates show a
satisfactory degree of accuracy.

As an example to verify the outcome of the identi-
fication procedure, we consider the identified linear
models at t = 2.4 s and the corresponding linearized
model obtained with CREATE-L. Fig. 7 shows a
comparison between the Bode diagrams of these
two models (dash-dotted red and solid blue, respec-
tively). As it can be seen from the figure, the dia-
grams are reasonably similar, despite the significant
reduction in the number of considered states. The
identified model matrices, for the considered exam-

ple, are

Â =

[
−19.73 −2.627 · 105

3.454 · 10−5 11.38

]
B̂ =

[
1147

1.435 · 10−3

]
.

(23)
It can be observed that, as expected, b ≈ 0 and
c > 0; in particular, c is very close to the unstable
eigenvalue, which in this case is γ = 11.08 s−1. More-
over, from eq. (18) we can compute the identified
inductance and resistance terms as

L̂V S3 =

(
b1 −

a12b2
a22

)−1

R̂V S3 =

(
−a11 +

a12a21
a22

)
L̂V S3

The estimates obtained in this way are R̂V S3 =
0.016 Ω, L̂V S3 = 0.85 · 10−3 H which are reason-
ably close to the actual values of RV S3 = 0.012 Ω,
LV S3 = 1 · 10−3 H used in CREATE-L. As it was
already pointed out, note that we expect L̂V S3 to
be related to, but different from, its "true" value,
as it is affected by the non-rigid behaviour of the
plasma and by the presence of the passive struc-
tures, which are not explicitly taken into account in
the structure of the identified model. On the other
hand, the error in the estimation of the V S3 circuit
resistance causes an error in the estimation of the
transfer function from δVV S3 to δIV S3 in the low
frequency region. This problem is discussed in the
next section (see fig. 7).

3.4. Fitting procedure for the static gain
From fig. 7 it can be noticed that the static gain

of the system is not perfectly identified. A possi-
ble explanation is that the data points used in the
identification are sampled while the system is still
evolving through a transient phase. However, we
can exploit the physical knowledge of the plant to
mitigate this phenomenon. In particular, from equa-
tion (15) it is possible to see that the static gain
for the IV S3 channel is given by 1/RV S3, where the
value of the V S3 circuit resistance RV S3 is usually
known and/or can be accurately calibrated. On the
other hand, we have no a priori knowledge of the
static gain of the zp transfer function.

For discrete-time systems, the static gain can be
computed as

G0 = (I−A)−1B , (24)

where I represents the identity matrix. We can then
modify the DMDc algorithm in order to include
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this information in the pseudo-inversion in eq. (22).
To do so, first of all observe that eq. (24) can be
rewritten as

G0 = AG0 +B . (25)
Note that, for stable systems, this is equivalent
to considering a fictitious data sample x(k + 1) =
x(k) = G0 taken when the system has reached a
regime condition under a unitary input. Since (25)
has the same form of eq. (19), if an estimate of
the static gain G0 is available, we can include it in
the identification procedure by modifying eq.(22) as
follows[
Â B̂

]
= [X1,T+1 αG0]

[
X0,T αG0

U0,T 1

]†
, (26)

where α is a free scalar parameter that can be used
to opportunely weigh the static gain condition. In
practice, since an accurate measurement of the RV S3

parameter is usually available, we can force the first
element in G0 to be equal to 1/RV S3. On the other
hand, since the gain on zp is not known a priori, one
possibility to obtain a value for the second entry in
G0 is to run the identification procedure in its plain
form (22) first, then compute the estimated static
gain Ĝ0 from Â, B̂ according to eq. (24), and set the
second element in G0 equal to the corresponding
entry in Ĝ0. This is equivalent to assuming that the
first-guess of the parameter, obtained through the
first identification procedure, is sufficiently reliable.
As it can be seen from fig. 7, this procedure allows
to obtain a better estimate of the transfer function
related to the IV S3 channel, while leaving the one
that links zp to VV S3 practically unaffected.

It is worth to observe that, in the proposed VS
architecture (fig. 3), the quantities that are fed back
to the controller are IV S3 and żp, so the static gain
of the loop transfer function will depend only on the
gain on IV S3. A precise knowledge of this gain allows
to exactly fix the upper gain margin of the system
when designing the VS controller (see discussion in
sec. 4).

4. Controller design

We are now ready to introduce a procedure to
automatically design a controller in the form (12)
based on the model (18). To clarify the choices
made in this procedure, as a running example we
will again consider the full-order and identified (in-
cluding the fit of the static gain on IV S3) linear mod-
els of sec. 3.3, related to the time instant t = 2.4 s
in the ramp-down scenario of sec. 5.1.
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Figure 7: Comparison between the CREATE-L (solid blue)
and identified linear models at t = 2.4 s (with and without
tthe static gain correction, dash-dotted red and dashed yellow
lines respectively). To compare the Bode diagrams, the
identified model has been converted to a continuous-time one
in MATLAB by using the ’zoh’ method. For this example,
a weight α = 400 has been used to fit the static gain of the
IV S3 channel.

As it was discussed in sec. 2.3, we aim at designing
a controller based on the feedback of the in-vessel
current IV S3 and of the plasma vertical velocity żp,
where the latter is estimated by means of a derivative
filter. We add this filter in series to the transfer
function P (s) associated to eq. (18) (see the HPF
block in fig. 3)

G(s) =

[
1 0
0 F (s)

]
P (s) (27)

In the design procedure we approximate the HPF
with an ideal derivative, i.e. F (s) = s. The resulting
channels for G(s) have the form

GI(s) =
ḠI(s− γ̃)

(s− γ)(s+ p̃)
(28a)

Gż(s) =
Ḡzs(s+ z̃)

(s− γ)(s+ p̃)
(28b)

with γ, γ̃, p̃, z̃ > 0. The transfer functions
GI(s), Gż(s) have a positive real part pole that cor-
responds to the (identified) growth rate γ, and a
second pole p̃ that is expected to be negative and
real. Moreover, note that the non-minimum phase
zero γ̃ in the transfer function for the IV S3 chan-
nel will usually be close to the growth rate γ (in
the example of sec. 3.3, γ̃ = 11.7 and γ = 11.08).
From a physical standpoint, this depends on the
fact that the unstable mode is not easily detectable
from the measurement of the in-vessel current. On
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the other hand, a zero appears in the żp channel as
well, due to the direct feedthrough of the voltage
vertical velocity (d ̸= 0 in eq. (17)).

By considering the control law (12) we obtain the
following open-loop transfer function 2

L(s) = KzGż(s) +KIGI(s)

= Kz

(
Gż(s) +

KI

Kz
GI(s)

)
(29)

The second order polynomial at the numerator of
L(s) may have complex conjugate roots. To avoid
a decrease of the loop gain in the neighborhood of
the natural frequency of these zeros, it is important
to guarantee that the damping factor is sufficiently
large. Indeed, it was observed that a low damping
factor decreases the attainable phase margin at the
input of the plant.

Hence, in order to increase the damping factor
associated to these zeros, we study the discriminant
of this polynomial, which is itself a second order
function of the parameter K̄ := KI/Kz given by

∆(K̄) = Ḡ2
IK̄

2 − 2(z̃ḠIḠz + 2γ̃ḠIḠz)K̄ + z̃2Ḡ2
z .

(30)
By setting ∆ ≥ 0 we enforce the zeros of the loop

transfer function to be real. A good choice for K̄
then is to take the smallest root of ∆, which we
denote with λm. By simple calculations, it can be
shown that the discriminant of the 2nd order poly-
nomial (30) is always positive for γ̃, z̃ > 0, which
guarantees that two real roots exist and the proce-
dure described in this section can be applied. On
the other hand, the a posteriori verification of this
last condition can be used as a validity test for the
resulting identified model.

By also explicitly taking into account the power
supply model (14), eq. (29) becomes

LPS(s) = Kz (Gż(s) + λmGI(s))WPS(s) (31)

We then choose Kz so as to ensure an upper gain
margin of at least 6 dB. If we denote the static gain
of LPS(s) by L0, we can choose for example

Kz = −2.1/L0

Notice that the static gain L0 depends on the gain
on the IV S3 current only, as the żp channel has zero

2In order to obtain a SISO transfer function to work on,
we consider the open loop transfer function that links the
output of the controller to the voltage request to the power
supplies VV S3.

static gain. As a consequence, thanks to the fitting
procedure described in sec. 3.4, a quite accurate es-
timate of L0 is available. It is also worth to remark
that the proposed controller closes a positive feed-
back loop on the in-vessel current and a negative
one on the plasma vertical velocity; for more details
about this point, see the discussion in [26].

The procedure described so far leads, for the case
under examination, to a loop function with a rather
high crossing frequency ωc of about 270 rad/s, as it
can be seen from fig. 8), which may negatively inter-
act with the actual power supplies and diagnostics.
Indeed, in order to have a sufficiently small phase
delay due to the actuator and diagnostics, in the
design procedure the crossing frequency has been
fixed to 40 rad/s. To achieve the desired value for
ωc, we introduce in the controller a lag network in
the form

1 + iω τ
m

1 + iωτ
.
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Figure 8: Bode diagram of the loop function (31) for the
full-order (CREATE-L) and identified linearized models. In
the plot, a 2nd order Padé approximant of the delay term
has been used.

The network is parameterized in τ , the charac-
teristic frequency of the pole, and m, which defines
the pole-zero distance. In our procedure, we fix
m = 3 and scan the values of τ in order to obtain
the desired attenuation at the crossing frequency (in
a practical implementation, the values of the atten-
uation at different values of τ can be pre-computed
offline and stored in a look-up table). Note that
the phase margin is quite large, as it can be seen
in fig. 8, so the lag introduced by the network is
acceptable.
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The resulting controller is

R(s) =
1 + s τ3
1 + sτ

[KI , Kz] ,

Kz = −2.1

L0
, KI = −Kzλm .

(32)

Fig. 9 shows the Nichols chart resulting from the
application of the control law (32) to the considered
example. It can be seen that the loop function has
a large phase margin of about 90° and upper and
lower gain margins of 6.7 and 16 dB respectively.

Figure 9: Nichols chart of the loop function obtained by
applying the control law (32). In the plot a 2nd order Padé
approximant of the delay term has been used.

5. Numerical simulations

To test the effectiveness of the procedure, non-
linear simulations have been carried using the
CREATE-NL+ code. These simulations include a
portion of ramp-down from a baseline ITER scenario
and a transition between two different plasma config-
urations. Moreover, analyses based on a CREATE-L
linearized model have been used to assess the impact
of measurement noise on the considered quantities.

5.1. Plasma ramp-down

The first simulated scenario is the portion of the
ITER ramp-down already described in sec. 3.3.

As it can be seen from fig. 11, the controllers
that results by the proposed identification/design
procedure are able to stabilize the plasma through all
the considered scenario segment. In particular, the
different panels show the plasma centroid vertical
position (the slow drift is due to the fact that the
plasma current is ramping down) and velocity, and
the V S3 current and voltage, which are brought

γ βp li κ δ
Initial eq. 4.92 0.66 0.88 1.77 0.44
Final eq. 3.92 0.77 0.76 1.80 0.44

Table 1: Parameters for the initial and final plasma configura-
tions considered in the simulation of sec. 5.2: growth rate γ,
profile parameters βp and li, elongation κ and triangularity
δ.

close to zero at steady state. It is worth to notice
that, in many magnetic control systems, the Kz

gain in the control law 12 is scaled linearly with the
plasma current; in the present application, however,
this is not done explicitly, since the identification
procedure is run frequently enough to compensate
for the Ip variation.

5.2. Plasma growth rate variation
In the next simulation, we consider a different

plasma configuration with a lower growth rate,
which varies from ∼ 5 to ∼ 4 s−1 over a time interval
of 13s. The segment is obtained by transitioning be-
tween two plasma configurations, whose parameters
are shown in table 1.

The results obtained for this simulation in terms
of the plasma current and the controlled quantities
are shown in fig. 13, while fig. 14 shows the actual
and identified growth rates. It can be seen that
the algorithm identifies the value of γ with a good
accuracy, even if a slight oscillation can be seen in
fig. 14, probably induced by the change in direction
of the VS kicks.

5.3. Effect of measurement noise
Finally, in this section we analyze the effect of

an additive measurement noise on the data used in
the identification procedure on the accuracy of the
identified model. To do so, we chose a linearized
model of the plasma response associated to a plasma
configuration with a growth rate γ ≈ 4.9, and we
carried out the identification in the presence of differ-
ent levels of measurement noise; then, we compared
the resulting identified growth rates with the actual
value.

In particular, for the IV S3 current we considered
a white Gaussian noise with σI ∈ [0, 10]% of IV S3.
Notice that this value is significantly larger with re-
spect to the foreseen ITER PF current measurement
noise, for which two contributes are foreseen, one ex-
pressed in percent with respect to the current value
and with a standard deviation of σ = 0.1%, and
the other with a very low fixed standard deviation
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Figure 11: Ramp-down simulation: IV S3 current (top-left
panel), VV S3 voltage (top-right), plasma centroid position
zp (bottom-left) and velocity żp (bottom-right).

σ = 3.5 A [34] (the latter term has been neglected
in this analysis). For what concerns zp instead, we
considered again an additive white Gaussian noise
with standard deviation σz ∈ [0, 5] mm. It is again
worth to notice that 5 mm represent a significant
error on zp, since usually maximum displacements
in the order of a few centimeters are considered (see
for example fig. 11). No noise has been added to
the control action VV S3, for which we assumed to
have an accurate measurement available. In order
to quantify a worst-case scenario performance, for
each tile in fig. 15 we considered 5 different noise
realizations and took the largest resulting error in

terms of γ fitting.

To cope with the significant level of noise intro-
duced in the scheme, in this simulation the kicks
amplitude is increased to 250 V. The maximum
gap variation produced by these kicks is about 4cm,
which never causes the plasma to touch the sur-
rounding wall. Moreover, applying a smoothing
filter to the data turned out to be greatly beneficial
to the identification accuracy. It is worth to remark
that, since all the data are collected before running
the identification procedure, a non-causal smoothing
filter can be employed, i.e. no delay is introduced
by the filtering action. For this analysis, we used a
moving average filter with a window of 70 samples.

The results in terms of accuracy of the identified
model are shown in fig. 15, that shows the error
in terms of the resulting model’s growth rate when
compared with the actual one. The four bode plots
in fig. 16 refer to the cases where no noise is consid-
ered and where the maximum noise on either IV S3,
zp or both signals is applied. Remarkably, the re-
sulting controller is capable of stabilizing the plant
in all these four cases, despite the very high levels
of noise and the resulting fitting error in terms of γ.
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Figure 12: Nichols chart of the loop function obtained by
applying the control law (32) for all the identificated systems.
The loop functions with both the identified (blue) and actual
(red) dynamics are shown. In the plots, a 2nd order Padé
approximant of the delay term has been used.

6. Conclusions

In this article, an online tuning procedure for
the parameters of the VS controller of the ITER
tokamak has been proposed. The identification pro-
cedure, based on the DMDc approach, periodically
updates a simplified 2nd order model, that can be
used online to tune/design a stabilizing controller.
In this view, a possible design procedure, based
on linear controller synthesis techniques, has been
proposed and applied to different test cases. The
procedure also includes a method to refine the es-
timate of the static gain by taking into account
the knowledge of the stabilization circuit resistance.
The proposed data-driven approach proved effec-
tive in different scenarios, and is able to cope with
significant levels of measurement noise.

Currently, the main limitation of the proposed ap-
proach is that the identification procedure does not
take into account variations in the internal plasma
current distribution. The choice made in this work
was to run the identification algorithm far from tran-
sient phases, such as LH/HL transitions, in order
to avoid a degradation of the estimation accuracy
due the presence of external disturbances that are
not accounted for. However, modified versions of
the proposed technique could be investigated, where
an online knowledge of the plasma internal pro-

files (usually provided in real tokamak discharges
by Magnetic/Kinetic Equilibrium Reconstruction
algorithms in terms of few, synthetic descriptors) is
explicitly taken into account in the model identifi-
cation.
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0.4 s 1.4 s 2.4 s 3.4 s 4.4 s 5.4 s 6.4 s 7.4 s 8.4 s 9.4 s 10.4 s 11.4 s 12.4 s

t id.

0

1

2

3

4

5

6

 [
s

-1
]

Figure 14: Growth rate (actual vs identified) for the sim-
ulation of sec. 5.2. The blue bars represent the identified
eigenvalues, while the yellow diamonds are the growth rates
of the resulting linearized models. The oscillating behaviour
suggests that the identification is more accurate in the case
of a downward-upward kick.

[17] J.N. Kutz, S.L. Brunton, Bingni W. Brunton, and J.L.
Proctor. Dynamic mode decomposition: data-driven
modeling of complex systems. SIAM, 2016.

[18] P. J. Schmid and J. L. Sesterhenn. Dynamic mode
decomposition of numerical and experimental data. In
Bull. Amer. Phys. Soc. 61st Annual Meeting of the
APS Division of Fluid Dynamics, San Antonio TX,
volume 53, page 208. Amer. Phys. Soc., College Park,
MD, 2008.

[19] P.J. Schmid. Dynamic mode decomposition of numerical
and experimental data. Journal of fluid mechanics, 656:
5–28, 2010.

[20] C.W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and
D.S. Henningson. Spectral analysis of nonlinear flows.
Journal of fluid mechanics, 641:115–127, 2009.

[21] R. Taylor, J N. Kutz, K. Morgan, and Brian A Nelson.
Dynamic mode decomposition for plasma diagnostics
and validation. Review of Scientific Instruments, 89(5):
053501, 2018.

0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

6

7

8

9

10
 = 4.9168

-3

-2

-1

0

1

2

Figure 15: Identification accuracy in presence of different
levels of noise, expressed in terms of the difference between
the actual and the identified growth rate. The Bode plots
corresponding to the four corners of this graph are shown in
fig. 16.

14



0

10

20

30

T
o

: 
I V

S
3

From: V
VS3

-90

-45

0

45

T
o

: 
I V

S
3

-120

-100

-80

T
o

: 
z

p

10-2 10-1 100 101 102 103
-180

-135

-90

T
o

: 
z

p

Identified

Actual

Noise on I
VS3

 = 0%, Noise on z
p
 = 0cm

Frequency  (rad/s)

M
a

g
n

it
u

d
e

 (
d

B
) 

; 
P

h
a

s
e

 (
d

e
g

) 0

20

40

T
o

: 
I V

S
3

From: V
VS3

-90

-45

0

45

T
o

: 
I V

S
3

-120

-100

-80

T
o

: 
z

p

10-2 10-1 100 101 102 103
-180

-135

-90

T
o

: 
z

p

Identified

Actual

Noise on I
VS3

 = 10%, Noise on z
p
 = 0cm

Frequency  (rad/s)

M
a

g
n

it
u

d
e

 (
d

B
) 

; 
P

h
a

s
e

 (
d

e
g

)

0

10

20

30

T
o

: 
I V

S
3

From: V
VS3

-90

-45

0

45

T
o

: 
I V

S
3

-100

-50

T
o

: 
z

p

10-2 10-1 100 101 102 103
-180

-135

-90

T
o

: 
z

p

Identified

Actual

Noise on I
VS3

 = 0%, Noise on z
p
 = 0.5cm

Frequency  (rad/s)

M
a

g
n

it
u

d
e

 (
d

B
) 

; 
P

h
a

s
e

 (
d

e
g

) 0

20

40

T
o

: 
I V

S
3

From: V
VS3

-90

-45

0

45

T
o

: 
I V

S
3

-120

-100

-80

T
o

: 
z

p

10-2 10-1 100 101 102 103
-180

-135

-90

T
o

: 
z

p

Identified

Actual

Noise on I
VS3

 = 10%, Noise on z
p
 = 0.5cm

Frequency  (rad/s)

M
a

g
n

it
u

d
e

 (
d

B
) 

; 
P

h
a

s
e

 (
d

e
g

)

Figure 16: Examples of identified vs. actual Bode diagrams, taken from the analysis shown in fig. 15. The panels (from top-left
in clockwise direction) represent the cases where no noise is applied or when the maximum level of noise is applied to IV S3 only,
both IV S3 and zp or zp only respectively.
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